2,863 research outputs found

    \u3cem\u3eLaesio enormis\u3c/em\u3e

    Get PDF

    Varieties of apples in Ohio

    Get PDF

    Modeling of the coupled magnetospheric and neutral wind dynamos

    Get PDF
    Work at SRI involved modeling the exchange of electromagnetic energy between the ionosphere and magnetosphere to help interpret the DE-B Poynting flux observations. To describe the electrical properties of the high-latitude ionosphere, we constructed a numerical model, from the framework provided by the Vector Spherical Harmonic (VSH) model, that determines the ionospheric currents, conductivities, and electric fields including both magnetospheric inputs and neutral wind dynamo effects. This model development grew from the earlier question of whether an electrical energy source in the ionosphere was capable of providing an upward Poynting flux. The model solves the steady-state neutral wind dynamo equations and the Poynting flux equation to provide insight into the electrodynamic role of the neutral winds. The modeling effort to determine the high-latitude energy flux has been able to reproduce many of the large-scale features observed in the Poynting flux measurements made by DE-2. Because the Poynting flux measurement is an integrated result of energy flux into or out of the ionosphere, we investigated the ionospheric properties that may contribute to the observed flux of energy measured by the spacecraft. During steady state the electromagnetic energy flux, or DC Poynting flux, is equal to the Joule heating rate and the mechanical energy transfer rate in the high-latitude ionosphere. Although the Joule heating rate acts as an energy sink, transforming electromagnetic energy into thermal or internal energy of the gas, the mechanical energy transfer rate may be either a sink or source of electromagnetic energy. In the steady state, it is only the mechanical energy transfer rate that can generate electromagnetic energy and result in a DC Poynating flux that is directed out of the ionosphere

    Viewing Nature Scenes Positively Affects Recovery of Autonomic Function Following Acute-Mental Stress

    Get PDF
    A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor. © 2013 American Chemical Society

    Brain structural concomitants of resting state heart rate variability in the young and old: evidence from two independent samples

    Get PDF
    Previous research has shown associations between brain structure and resting state high-frequency heart rate variability (HF-HRV). Age affects both brain structure and HF-HRV. Therefore we sought to examine the relationship between brain structure and HF-HRV as a function of age. Data from two independent studies were used for the present analysis. Study 1 included 19 older adults (10 male, age range 62-78 years) and 19 younger adults (12 male, age range 19-37). Study 2 included 23 older adults (13 males; age range 55-75) and 27 younger adults (19 males; age range 18-34). The rootmean- square of successive R-R-interval differences (RMSSD) from ECG recordings was used as timedomain measure of HF-HRV. MRI scans were performed on a 3.0-T Siemens Magnetom Trio scanner. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite, including 12 regions as regions-of-interests (ROI). Zero-order and partial correlations were used to assess the correlation of RMSSD with cortical thickness in selected ROIs. Lateral orbitofrontal cortex (OFC) cortical thickness was significantly associated with RMSSD. Further, both studies, in line with previous research, showed correlations between RMSSD and anterior cingulate cortex (ACC) cortical thickness. Meta-analysis on adjusted correlation coefficients from individual studies confirmed an association of RMSSD with the left rostral ACC and the left lateral OFC. Future longitudinal studies are necessary to trace individual trajectories in the association of HRV and brain structure across aging

    Validity of the Polar V800 heart rate monitor to measure RR intervals at rest

    Get PDF
    Purpose To assess the validity of RR intervals and short-term heart rate variability (HRV) data obtained from the Polar V800 heart rate monitor, in comparison to an electrocardiograph (ECG). Method Twenty participants completed an active orthostatic test using the V800 and ECG. An improved method for the identification and correction of RR intervals was employed prior to HRV analysis. Agreement of the data was assessed using intra-class correlation coefficients (ICC), Bland–Altman limits of agreement (LoA), and effect size (ES). Results A small number of errors were detected between ECG and Polar RR signal, with a combined error rate of 0.086 %. The RR intervals from ECG to V800 were significantly different, but with small ES for both supine corrected and standing corrected data (ES 0.999 for both supine and standing corrected intervals. When analysed with the same HRV software no significant differences were observed in any HRV parameters, for either supine or standing; the data displayed small bias and tight LoA, strong ICC (>0.99) and small ES (≤0.029). Conclusions The V800 improves over previous Polar models, with narrower LoA, stronger ICC and smaller ES for both the RR intervals and HRV parameters. The findings support the validity of the Polar V800 and its ability to produce RR interval recordings consistent with an ECG. In addition, HRV parameters derived from these recordings are also highly comparable

    The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity

    Get PDF
    While frank obesity is associated with reduced HRV, indicative of poorer autonomic nervous system (ANS) function, the association between body mass index (BMI) and HRV is less clear. We hypothesized that effects of adiposity on ANS are mostly mediated by visceral fat and less by subcutaneous fat; therefore, centrally distributed adipose tissue, that is, waist circumference (WC), should be more strongly associated with HRV than overall adiposity (BMI). To examine this hypothesis, we used data collected in a subset of the Baltimore Longitudinal Study of Aging to compare strength of association between HRV and WC to that of HRV and BMI. Time domain HRV variables SDNN (standard deviation of successive differences in normal-to-normal (N-N) intervals) and RMSSD (root mean square of successive differences in N-N intervals) were calculated from 24-hour Holter recordings in 159 participants (29–96 years). Increasing WC was associated with decreasing SDNN and RMSSD in younger but not older participants (P value for WC-by-age interaction = 0.003). BMI was not associated with either SDNN or RMSSD at any age. In conclusion, central adiposity may contribute to sympathetic and parasympathetic ANS declines early in life
    corecore